

# SMUD and the Smart Grid

Jim Parks

CEC Load Management Standards
Smart Grid Workshop

April 29, 2008

## **Smart Grid Vision**



**EPRI Intelligrid** 



## **SMUD Smart Grid Elements**

### Distribution System Smartening

Add or Expand SCADA at our distribution substations

#### AMI

- Intercommunications with SCADA
- Communications with end uses

### Demand Response

- System and targeted load control
- Price response

#### Distributed Generation

- PV
- CHP
- Plug-In Hybrids
- Storage

### Zero Energy Smart Homes

Combines all of the above



# **Distribution System Smartening**

- In process of integrating existing substations into SCADA
  - Updating relaying (integrated electronic devices) and metering
  - Adding remote control
  - One-third of existing substations rewired to date
  - All new substations for last 10 years installed with SCADA
- Automating with remote control some critical 69kV switches
- Capacitor control algorithm on substation and pole capacitors that dispatches capacitors for local and system needs
- AMI RFP requirement that communication system be able to support smart SCADA



# **Potential Network Improvements**

- Focus on distribution level improvements
  - SMUD has own transmission control area.
- Ultimate goal is to automate to the circuit level
  - Integrate end point voltages into SCADA to manage voltage profiles better
  - Automatic sectionalizing and load restoration
  - Deploy CVR (conservation voltage reduction) to systematically run tighter margin on voltages and loading
  - Dynamic circuit configurations to reduce losses
- Overlay AMI for outage notification, load management, meter and meter data management, theft detection, billing services, etc.



## **Distribution Efficiency**

- Current distribution losses = 9%
- Specified high efficiency transformers
- Close monitoring of distribution system helps identify power theft
- Contract with NREL to determine the benefits of widedeployment PV
- Look at possibility to downsize distribution equipment based on results



# **Automated Metering Infrastructure**

- AMI RFP is on street, due middle of June 2008
- AMI Requirements:
  - Two-way communications
  - Communications protocol agnostic
  - Robust, secure, and scalable
  - Interval data and TOU capabilities
  - Home Area Network agnostic
  - Enables programmable communicating thermostat control and in home displays
  - Enables end-to-end system efficiencies—from generator to end use
- AMI full deployment scheduled for 2009 2012



## **Planned Demand Response**

- Develop load control programs to manage system peak load and target distribution system anomalies
  - Replace existing residential ACLM controllers with PCTs
  - Offer PCT-based temperature reset programs to residential and small commercial customers
  - Offer aggregator load control program to medium and large commercial customers
  - Expand auto-DR capability
- Develop time-dependent rates
  - Offer TOU and CPP rates to all classes.
- Use AMI to:
  - Measure and predict load control and price response
  - Identify distribution problems and manage local load and voltage



## **Distributed Generation**

## CHP/District Energy

- Key drivers are GHG reductions, customer savings and peak load reduction
- Identified 375 MW potential, 750 MW with cooling and heating
- Conducting feasibility studies with candidate customers
- Moving forward in negotiating cost effective projects
- In parallel, developing CHP Program

### Plug-In Hybrids

- Investigating active charge control and energy metering
- Potential vehicle-to-grid, vehicle-to-home

### Storage

- Battery storage
  - A 20kW 9hr vanadium redox flow battery installation at a Sacramento Sprint-Nextel site to be installed in September 2008
  - ZEH battery storage
- Thermal storage
- Ultracapacitors Light rail 1MW in 20 seconds

#### PV

4,000+ SolarSmart (solar/>30% Title 24) homes in pipeline



## **SMUD SolarSmart Homes**

- Long term goal: Homes that produce as much energy as they use on an annual basis (annual net-zero energy use) by 2020
- CRADA with NREL/DOE Building America Program
  - Current program = 60% reduction in energy bill
  - Target annual net-zero electricity use
  - Use commercially available technologies
- Zero Energy Home Pilots
  - Developed cost effective prescriptive package of EE and PV
- SMUD SolarSmart Homes
  - Applied ZEH pilot experience (EE/PV package)
  - 2007 roll out of standard utility program
  - Market transformation underway 30%+ market penetration



## **SMUD ECOSMART Home**

- Next generation homes
  - Build true Zero Energy Home—a home with no annual electric or natural gas utility bill, and zero net electric demand during summer peak periods
  - Continue R&D with NREL
  - Current Energy performance goals
    - Annual source energy: 80% reduction
    - Zero net summer peak electric demand: 4 PM to 8 PM
- Develop new package of advanced (not yet commercialized)
   EE and DR measures, solar PV and solar thermal
  - Super tight envelope advanced framing, SIPS
  - Evaporative condensers
  - Home automation
    - Pre-cooling
    - Price signaling
    - In home display (production and consumption)

